












We could use our framework to test various navigation strategies to reveal the most 
appropriate navigation mechanism; in fact, we explored the navigation strategy of the 
robot using this same simulator, and the results of our analysis will be reported else-
where [17]. In this paper we report only the most suitable strategy we found. 

The idea underlying the navigation mechanism is to use a strategy similar to that 
used by pedestrians, to obtain human-like collision avoidance in the robot. To this end 
we used the social force model [8] with the human-robot parameter values. In con-
crete, given the local destination to obtain the preferred velocity, the system computes 
the robot's desired next position on x-y coordinates using the “collision prediction” 
(CP-SFM) social force model of eq. (1), and converts it into a polar coordinates ve-
locity command (vp, p). However, we needed to consider the discrepancies between 
the "ideal" simulation world and the real one as, for example, slow acceleration, the 
inability of our differential drive robot to move aside, the noise in the human tracking 
system and the computation delays; discrepancies that cause the robot’s trajectory to 
diverge from that determined by the “ideal” model. To compensate this difference, we 
further calibrated the pedestrian model parameters to fit the real world behavior (see 
section 4.1). The polar coordinates (vp, p) velocity command is finally examined 
through a safety-check mechanism, a time varying dynamic window method [19] 
using a 1.5 sec window time by considering maximum speed and acceleration of our 
robot, which is long enough to stop the robot. 

3.5 Simulator  

The simulator is used to test the robot navigation, reproducing people's walking 
behavior around the robot. The simulator has three sub-modules: pedestrian simulator, 
noise/delay simulator, and the robot's motion simulator. 

The pedestrian simulator computes pedestrians’ positions every 100ms, on the ba-
sis of the pedestrian model [8]. The noise/delay simulator simulates the noise in sens-
ing, modeled as a Gaussian noise, and delay in observation and computation. The 
parameters of the noise simulator were decided on the basis of data collected in the 
target environment (section 4.1). The robot's motion simulator simulates the move-
ments of the robot by using the robot controller taking also in account the dynamics of 
its two-wheeled mobile base. 

Fig. 6 shows the trajectories of the robot (red ellipse) and of a pedestrian (black el-
lipse) that got closer and stopped around the robot before directing to his goal. As the 
pedestrian approached the robot, the latter deviated to the right and was able to avoid 
him, even if the pedestrian approached and stopped around the robot. 

 

Fig. 6. Trajectories in simulation 
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4 Simulation  

4.1 Overview 

The simulation was conducted in a 10 x 20 m virtual corridor. The simulator sets 
people’s initial positions and goals to opposite sides of the corridor, along with their 
arrival time to the environment and preferred velocity (average and S.D are 1.4m/sec  
and 1.33, based on the data collection in Section 3.3.1). The ratio of HRI type behav-
iors is set as the same as the one observed in data collection (section 3.3.1). We also 
measured the delay of the system in the laboratory, which resulted to be 350msec, and 
defined the noise of the sensing system as 0.06m, as reported in [7]. The initial posi-
tion and goal of the robot are set as for the pedestrians. 

By using delay and noise information, we further calibrated the values of the pe-
destrian model parameters to obtain in the real robot system trajectories as similar as 
possible to the “ideal” ones (i.e. obtained using the HRI model with no noise or de-
lay). As a result, the parameters for the real robot were increased to Ar= 0.93, Br 
=1.61, showing that the collision-avoiding interaction has to be strengthened to cope 
with the robot’s motion limitations. 

4.2 Measurement 

We propose two performance measures: 
Ratio of collision: we defined a collision initiated by the robot as a situation in 

which the distance between a center of person and the center of robot gets smaller 
than 30cm, and the ratio of collision was computed as the number of collisions per the 
number of people who entered within a 5m distance from the robot. In this evaluation, 
we did not count collisions caused by a pedestrian, defined as either a) a pedestrian 
collided with the robot while it was stopped, or b) a pedestrian collided with the robot 
from behind. Note that in the real world collisions might not happen even if this dis-
tance is attained, as humans may rotate their body to avoid the collision; nevertheless 
this is a valid measure of the safety of the robot's behavior. 

Efficiency: defined as: "time to reach the goal" over "time to reach the goal going 
straight at preferred speed". Deviations due to collision avoiding reduce efficiency. 

4.3 Results 

To confirm the safety capability of robot navigation in various situations, we con-
ducted simulations by increasing density from 0.01 to 0.05 people/m2 with 0.01 inter-
vals. In each density setting, we conducted 1000 simulations.  

Fig. 7 shows efficiency and ratio of collision in each density setting. We had ratio 
of collision 0% until density 0.03, while the robot caused 0.01% and 0.02% collisions 
at density 0.04 and 0.05, respectively. The efficiency at density 0.01 was 79%, and it 
decreases with increased density (65% at density 0.05). 
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Fig. 7. Efficiency (left) and ratio of collision (right) in simulations 

5 Field Trial  

5.1 Overview 

According to the results of simulations, our robot has enough safe capability in real 
environments provided that the density is not higher than 0.03. To confirm this pre-
diction, we conducted a field trial in a real environment with characteristics similar to 
the simulated one. Fig. 8 shows the corridor of a shopping mall in which we per-
formed the field trial, an area of size 10 x 20 m, in which people walk with an average 
speed of 1.32m/sec (s.d. 1.33) at a density up to 0.03 people/ m2. The purpose of the 
field trial is to test (a) whether the robot safely navigates as predicted by simulations, 
and (b) whether the efficiency trend is reproduced as predicted. 

The robot was fully autonomously operated, except for the start signal sent by an 
operator to trigger it to move. After receiving the signal, the robot moved from points 
A/B to B/A (we defined a single movement between these points as one trial). 

 

Fig. 8.     Map and image of the field trial site 

5.2 Measurements 

To confirm whether the robot could navigate safely in a real environment, we 
measured efficiency and coded whether the robot’s behavior caused any problems in 
terms of safety, i.e., for each person who walked within 5 m from the robot, we asked 
coders to determine whether the situation was safe, using the following criteria: 

Unsafe: due to the presence or motion of the robot, the pedestrian had to make a 
quick change in his/her moving direction to avoid colliding with the robot.  

Otherwise, the person's situation was coded as safe.  

5.3 Results 

In the field trial, we conducted a two-hour test consisting of 27 trials. Two coders 
classified the interactions between the robot and the 160 pedestrians that walked with-
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in a 5 m distance from it as safe or unsafe by observing the recorded videos. Cohen’s 
kappa coefficient was 0.89, indicating high consistence. Moreover, for consistent 
analysis, the coders discussed and reached a consensus on all the observed situations. 

Fig. 9 shows efficiency and unsafe situation in the field trial. As shown in the fig-
ure, no unsafe situation was found, confirming that our system safely navigates the 
robot in both simulated and real environments. The efficiency was 59%, 58% and 
51 % for density 0.01, 0.02 and 0.03, respectively. These values are lower than the 
simulated ones, possibly due to the more complex behavior of actual pedestrians (the 
models reproduce only average pedestrian behaviors; introducing stochasticity in 
pedestrian decisions could thus reduce the gap between simulations and the real 
world). However, the results showed a trend similar to the simulated one (an increase 
in density caused a decrease of efficiency). These results suggest that our simulation 
system reproduces properly the interaction between the robot and a pedestrian crowd. 

Fig. 10 shows a scene in which the robot successfully navigated in a many-people 
setting. The robot initially changed its moving direction to avoid a group of people, 
just to meet another incoming group (Fig. 10-a). As a result the robot slightly deviated 
to slip through the groups (Fig. 10-b). After avoiding the two groups, the robot tried 
to reach its goal, but another pedestrian was coming from the goal direction (Fig. 10-
c). Therefore, the robot deviated again to avoid the pedestrian and eventually headed 
toward its goal (Fig. 10-d).  

The robot was equally able to deal with pedestrians that tried to approach it, as 
predicted by our HRI type behaviors. In Fig. 11 we analyze one of these situations. 
While heading to its goal, the robot met a group of pedestrians coming from the op-
posite side (Fig. 11-a). After noticing the robot, a pedestrian deviated suddenly to 
approach it, and the robot changed its moving direction in order to avoid him (Fig. 
11-b). The pedestrian continued to approach the robot despite this avoiding maneuver 
(Fig. 11-c), but the robot could safely cope with the pedestrian’s motion (Fig. 11-d). 
These examples illustrate that the robot is able to navigate safely in the real environ-
ment as well as in the simulated environment. 

  

Fig. 9. Efficiency (left) and unsafe situations (right) in the field trial 

 
(a)                             (b)                            (c)                              (d) 

Fig. 10. The robot safely navigates through pedestrians in the mall 
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(a)                             (b)                             (c)                              (d)  

Fig. 11. The robot safely avoids an approaching pedestrian 

6 Conclusion  

We report our framework to deploy robots in a real shopping mall environment. 
We used a pedestrian simulator in order to develop and estimate the safety of the ro-
bot navigation system among a human crowd. In the simulator we employed a partic-
ular specification of the Social Force pedestrian model that has been developed to 
describe the relatively low-density settings occurring in shopping malls and the like 
[8]. We further addressed the diverse behavior of pedestrians toward the robot, i.e. we 
gathered data from a real environment and built a “HRI behavior model” for people 
slowing down to look at the robot, or approaching and stopping for curiosity, and 
included such a model in our simulator. 

We first tested the developed robot, which is navigated using the same collision 
avoidance model used for simulated pedestrians, in a simulation to confirm its safety. 
The results showed that the robot safely navigated among people with reasonable 
efficiency. Given that the simulation yielded safe navigation for densities up to 0.03 
people/m2, we estimated that we could deploy it in a real world environment with a 
similar density. To confirm this estimation, we conducted a field trial in a real shop-
ping mall, and the results of this trial demonstrated that the robot can navigate safely 
among people even when facing complex situations.  
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