
  

 

Abstract—This paper reports an interactive approach to 
improve the recognition performance by robots of objects 
indicated by humans during human-robot interaction. We 
developed an approach based on two findings in conversations 
where a human refers to an object, which is confirmed by a 
robot. First, humans tend to use the same words or gestures as 
the robot in a phenomenon called alignment. Second, humans 
tend to decrease the amount of information in their references 
when the robot uses excess information in its confirmations: in 
other words, alignment inhibition. These findings lead to the 
following design; a robot should use enough information 
without being excessive to identify objects to improve 
recognition accuracy because humans will eventually use 
similar information to refer to those objects by alignment. If 
humans more frequently use the same information to identify 
objects, the robot can more easily recognize those being 
indicated by humans. To verify our design, we developed a 
robotic system to recognize the objects to which humans 
referred and conducted a control experiment that had 2 x 3 
conditions; one factor was the robot’s confirmation way and 
another was the arrangement of the objects. The first factor had 
two levels to identify objects: enough information and excess 
information. The second factor had three levels: congestion, two 
groups, and a sparse set. We measured the recognition accuracy 
of the objects humans referred to and the amount of 
information in their references. The success rate of the 
recognition and information amount was higher in the adequate 
information condition than in the excess condition in a 
particular situation. The results suggested the possibility that 
our proposed interactive approach improved recognition 
performance. 

I. INTRODUCTION 

Social robots must provide services in real environments 
to recognize the objects indicted by humans as shown Fig. 1. 
To improve recognition performance, various approaches 
have been proposed. Nickel et al. used the 3D positions of a 
head and hands as well as the head’s orientation to recognize 
pointing gestures in object references [1]. Schauerte et al. 
integrated speech and pointing gesture recognition by image 
processing [2]. Kemp et al. proposed a method that used a 
laser pointer to develop a new robotic interface so that people 
can easily indicate positions [3]. Since these works addressed 
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the development of new devices or new algorithms, we 
describe them as engineering approaches, which is the most 
common type of works for improving recognition 
performance. 

However, just engineering approaches will not solve the 
degradation of recognition performance in real conversations. 
For example, humans have enormous variability in their 
lexical choices in conversations [4]. Such variability degrades 
the recognition performance because humans might not 
always use the words contained in a database that stores object 
characteristics and they also do not always use enough words 
to identify an object [5]. Even if robots can perfectly recognize 
speech or pointing gestures, they might not distinguish an 
object indicated by humans from other objects.  

In communication, humans solve such problems through 
the phenomenon of alignment with which humans tend to 
synchronize with their interlocutors such behaviors as 
vocabulary [6], syntax [7], lexical expressions [8], body 
movements [9,10] and facial expressions [11]. Through 
alignment, humans narrow down huge lexical choices and 
elicit terms, indications, or iconic gestures to naturally identify 
objects to their interlocutors.  

The alignment findings in the interaction among humans 
inspired researchers to design behaviors of computers and 
robots to investigate alignment in human-computer or 
human-robot interactions to develop natural interfaces [12,13]. 
Since such works use interaction to improve computer or 
robotic systems, they are called interactive approaches. They 
look useful because they do not need special devices like 
engineering approaches. Moreover, they can be integrated in 
interaction designs independent of engineering approaches.  

However, most works on alignment in human-computer or 
human-robot interaction have only investigated how 
alignment occurs without addressing how to apply it to real 
systems. Therefore, to the best of our knowledge, no research 
has reported how alignment should be applied to computer or 
robotic systems and whether it improves system performance. 
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Figure 1. Robot recognizing an object indicated by a human  
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In this paper, we developed a robotic system to recognize 
the objects to which humans refer and evaluated the effect of 
alignment in it.  

II. RELATED WORKS 

This section describes an overview of lexical and gestural 
alignment, which has been well studied by linguists, social and 
cognitive psychologists, and computer or robot scientists. 
Some works suggest that it is inhibited in certain situations.  

A. Lexical alignment 

In lexical alignment, two persons use the same terms for an 
object when they repeatedly talk about it [6-8]. Lexical 
alignment has been studied not only in human-human 
interaction but also in human-computer interaction [12,13] 
and human-robot interaction [14]. For example, Brennan 
suggested that humans readily adopted the terms of a 
computer partner through Wizard-of-Oz experiments using a 
database query task [12] and showed that the users of a spoken 
dialog system adapted their lexical choices to the system’s 
vocabulary. Iio et al. conducted experiments in which a human 
referred to several objects in conversations with a robot. Their 
results revealed that humans tended to choose the identical 
terms and their categories used by the robot [14]. 

B. Gestural alignment 

Gestural alignment has been observed where the speaker’s 
gestures tend to synchronize to a partner’s gestures in 
conversations. For instance, Charny reported that the postures 
of a patient and a therapist were congruent in psychological 
therapy [15]. Recent studies on embodied communication 
show that human gestures are entrained by robot gestures. 
Ogawa et al. developed a robot that synchronized its head nods 
with human speech. Through a conversation with a human, the 
entrainment of human nod motions was observed [16]. Ono et 
al. investigated human-robot communications involving 
giving/receiving route directions [17]. Iio et al. showed that 
people used more pointing gestures when a robot used gaze 
and pointing gestures [18]. Through entrainment, human 
gestures increased as robot gestures increased. 

C. Alignment inhibition 

Several studies reported cases where alignment became 
substandard in conversations. Shinozawa et al. investigated 
how humans referred to books when asking a robot to get them. 
Humans tended to use references with low information when a 
robot confirmed an indicated book using redundant 
information [5]. Holler and Wilkin found that mimicking 
co-speech gestures inhibited lexical alignment [23]. In their 
experiment, two interacting participants used both a verbal 
expression and a corresponding co-speech gesture at their first 
reference to an object, and then their word choice became less 
precise at their second reference despite consistent co-speech 
gestures. This phenomenon suggests that mimicking 
co-speech gestures is an integral part of establishing a shared 
understanding of referents and lexical alignment.  

 

III. INTERACTION DESIGN 

A. Object reference conversation 

Recognizing objects indicated by humans is one important 
ability for social robots. For example, when a human asks a 
robot to bring an object, she is referring to a specific thing. The 
robot must recognize it based on her speech or pointing 
gesture before getting it. Actually, robot systems for such 
interactions have already been extensively studied [20-22].  

Therefore, we created an interaction called object reference 
conversation (Fig. 2). A robot asks a person to refer to an 
object in an environment where several objects are arranged 
(Ask). Next, she refers to an object (Refer), and the robot 
confirms the object to which she referred (Confirm). Then she 
answers whether the object confirmed by the robot is correct 
(Answer). Regardless of the answer, the conversation ends. In 
general cases, robots should continue to confirm objects until 
she also confirms, but we need to control the numbers of 
references by the human and confirmations by the robot.  Our 
robot does not move to get the indicated objects because we 
focus on how humans refer to them. 

B. Confirmation behavior 

We designed confirmation behavior to exploit alignment 
in object reference conversations because many related works 
observed alignment while a person repeatedly referred to an 
object and listened to confirmation interlocutors 
[6-8,12,14,17]. 

So that robots can precisely recognize objects indicated by 
humans, humans must use references that include enough 
information to identify the objects. The following summarizes 
the suggestions of related works about this requirement: 

 Robots should utter necessary verbal expressions to 
identify an object because humans will come to use 
similar expressions. (Lexical alignment) 

 Robots should point because humans will repeat that 
gesture. (Gestural alignment) 

 Robots should avoid excessive verbal expressions 
because humans will decrease their own verbal 
expressions. (Alignment inhibition) 

 Robot should avoid useless pointing gestures to 
identify an object because humans will decrease their 
own verbal expressions. (Alignment inhibition) 

If humans provide enough verbal expressions to identify 
an object and point appropriately, it is easier for a robot to 
recognize the object indicated by humans. Since potential 
exists to improve the object recognition performance, we 
developed a robotic system for object reference conversations 
and designed confirmation behavior by a robot based on the 
above consideration.  

Figure 2. Object reference conversation: White and black boxes denote 
robot turns and human turns. 
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IV. SYSTEM 

Fig. 3 illustrates the architecture of our developed system. 
When a human says something and points at an object, the 
speech recognition module extracts verbal expressions to 
identify the object from the speech, and the pointing gesture 
recognition module detects a pointing gesture and calculates 
its direction. The results of each module are associated in the 
integration module, which also calculates the likelihood of an 
object being referred to by the human among all objects. The 
system regards an object with the highest likelihood as the 
indicated object. Then the robot confirms the accuracy of the 
indicated object based on the recognition results. 
Confirmation is made in the confirmation selection module 
based on the recognition results, the object’s information, and 
the other objects around it.  

A. Hardware 

1) Robot 
Robovie-R ver.2, which is a humanoid robot developed by 

the Intelligent Robotics and Communication Labs, ATR, has a 
human-like upper body designed for communication with 
humans. It has a head, two arms, a body, and a wheeled-type 
mobile base. On its head, it has two CCD cameras for eyes and 
a speaker for a mouth. The speaker can output recorded sound 
files installed on its internal controlled PC located in its body. 
We used XIMERA, which was developed in ATR, for speech 
synthesis. The following are the robot’s degrees of freedom 
(DOFs): three for its neck and four for each arm. Its body has 
sufficient expressive ability to perform human-like gestures. It 
is 1100 mm high, 560 mm wide, 500 mm deep, and weighs 
about 57 kg. We developed greeting and asking reference 
motions with a motion development tool. These motions are 
played with synthesized speech when the robot first greets the 
human and asks her to specify the object.  

2) Sensors 
We use a small microphone and range image sensors for 

getting specification information. The microphone captures 
voices when humans specify an object and answer based on 
the robot’s confirmation. It is attached to the human’s body. 

The range image sensor, which is called Kinect for 
Windows v2 and is developed by Microsoft, captures body 
frame data to recognize pointing gestures that refer to an 
object. The range image sensor is installed on the roof, 2.7 m 
from the floor. A web-camera is installed on the ceiling to 
detect objects in the environment through AR-markers. An 
external PC, which recognizes speech and pointing gestures, is 
also used as a database for the information of objects in the 
environment. 

B. Software 

The software contains four modules: speech recognition, 
pointing gesture recognition, integration, an object 
information database, and confirmation selection. First, voice 
and range images are sent to the speech and pointing gesture 
recognition modules, which calculate the reference likelihood 
of each object. Reference likelihood means the possibility that 
an object will be specified. The greater the reference 
likelihood, the higher is the possibility that humans indicated 
the object. The reference likelihoods calculated in the speech 
and pointing gesture recognition modules go to the integration 
module, which calculates the eventual reference likelihood 
and recognizes the indicated objects. The confirmation 
behavior selection module computes the minimum 
information for distinguishing the object from other objects 
using an object information database. 

1) Speech recognition 
The speech recognition module receives human speech 

that refers to an object and outputs each object’s reference 
likelihood based on the speech recognition results. The 
likelihood is calculated as follows. First, the numbers of 
intersection factors among the attributes included in the 
speech and each object in the object information database are 
calculated and normalized. In our system, we used a speech 
recognition engine called Julius, which provides good 
performance in Japanese [19].  

2) Pointing gesture recognition  
The pointing gesture recognition module detects pointing 

gestures by using body frame data from the Kinect and 
calculates the reference likelihood of each object based on the 
pointing arm’s vector. We modeled the likelihood as the 
difference from the pointing vector to a vector between a 
human and an object with a normal distribution function of 
N(0, 1). 

3) Integration  
The integration module merges the reference likelihoods 

of the speech and pointing gesture recognition. The two 
likelihoods are summed and normalized. If participants don’t 
use a speech or a pointing gesture, this module treats its 

Figure 4. Determining whether to use a pointing gesture 

Figure 5. Selecting attributes of an object used by robot in confirmations

Figure 3. System architecture 
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Figure 6. Examples of arrangement of books in each condition.

likelihood as zero. In summing and normalizing likelihoods of 
the speech and pointing gesture, we gives equal weight to the 
likelihoods in this system. This is because the accuracy of both 
speech and pointing recognition depends on situations, e.g. 
loudness of a speech, a speech rate, clarity of a pointing 
gesture and arrangement of objects, and so deciding a 
reasonable weight is difficult. The module sends the object id 
with the highest likelihood of other objects to the confirmation 
selection module. 

4) Object information database 
The object information database contains the attributes and 

the positions of all the objects in the environment. The 
attributes denote the verbal expressions used to identify 
objects, such as name, color, symbol, or shape. The attributes 
of objects are manually hand-coded. The object positions are 
automatically detected by AR-markers that are attached to the 
surface of every object [24]. 

5) Confirmation selection  
The confirmation selection module receives the object id 

from the integration module and outputs a satisfactory 
confirmation without excess information to identify the 
indicated object. The module determines whether to use a 
pointing gesture and then selects the object’s attributes uttered 
by the robot. We describe these processes in the following 
section. 

a) With or without a pointing gesture 

In this system, whether a pointing gesture is used depends 
on the extent to which the pointing gesture narrows down all 
of the objects to just that one confirmed by the robot. For 
example, if there are many objects, a pointing gesture does not 
narrow them down to the one confirmed by the robot; pointing 
gestures are not useful to identify one object out of many. 
Therefore, the robot does not use them in such cases.  

The procedure of selecting whether to use a pointing 
gesture is shown in Fig. 4. First, the robot faces an object when 
confirming its selection. This face direction decides the area 
where the object exists. If there is only one object within that 
area, a pointing gesture can identify it. Even if there are other 
objects in the area, a pointing gesture can identify the object if 
it is alone within the area determined by the pointing gesture 
direction. In this case, the robot uses pointing gestures as well. 
If there are other objects in the pointing gesture’s area, the 
decision whether to point depends on the extent to which the 
pointing gesture narrows down other objects from that object. 
Since pointing gestures, which narrow down other objects to 
less 50%, are useful to identify an object, we used them. In 
other cases, the robot did not use them.  

b) Attributes used by robots in confirmations 

The robot uses the minimal attributes of an object to 
identify it in a confirmation. Next we describe how to select 
the minimal attributes (Fig. 5). 

First, the robot only gives one attribute that is chosen 
randomly if it confirms an object within an area decided by its 
face or pointing direction. In this case, only one attribute is 
sufficient to identify the object because a pointing gesture can 
distinguish it from the others. If there are other objects within 
the area, the robot uses enough minimal attributes to identify 

the object. If there are several sets of minimal attributes, we 
need to select one set from the other sets. In this case, the 
system calculates the similarity of the attributes in each set and 
chooses the set with the least similarity among the object and 
other objects, because we are considering a situation where 
speech recognition errors happen frequently. If the set of 
attributes is similar between the object and other objects, only 
missing one attribute causes failure of the object reference 
recognition. Therefore, not all of the sets of these objects 
should be similar.  

To calculate the similarity of attributes, we used the 
Levenshtein distance of the letters of attributes. The 
Levenshtein distance is a string metric that measures the 
difference between two sequences. The greater the 
Levenshtein distance, the greater is the difference between 
two strings. The robot uses the minimal attributes with the 
highest Levenshtein distance among the object and other 
objects. 

V. EVALUATION 

A. Trial design 

We conducted an evaluation trial to investigate the 
effective of our developed system in several possible 
situations. We controlled the robot’s confirmation behavior 
(confirmation factor) and the arrangement of objects in the 
environment (arrangement factor). In the following, we 
explain these controlled factors.  

1) Confirmation factor 
The confirmation factor had two levels: decent and excess. 

In the decent condition, the robot confirmed objects with 
enough information; the confirmations were based on our 
proposed approach. On the other hand, in the excess condition, 
the robot confirmed objects with excessive information. 
Therefore, the robot gave every attribute of an object and 
pointed during the confirmations. 

The speech format of the confirmations is the following 
sequence of the attributes of objects:  

[Deictic] [Figure] [Symbol] [Color] object name. 

For example, the robot says, “That circle and red book?” or 
“That triangle, B and blue book?”. 

The confirmation factor was a within-participant 
condition. 

2) Arrangement factor 
We set this factor to check the influence of the 

arrangement of objects on the object reference recognition 
performance because the arrangement may affect what kinds 
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of verbal expressions and pointing gestures are chosen by 
people. The arrangement factor had three levels: congestion, 
two groups, and a sparse set. In the experiment, we asked 
participants to select books and arrange them freely under 
these three conditions. For example, we instructed them to 
“Stack the books close to each other,” “Put books into three 
similar groups,” and “Separate each book from the others” in 
the congestion, three groups, and sparse set conditions, 
respectively. Examples of a participant’s arrangement are 
shown in Fig. 6. 

B. Environment 

The environment is shown in Fig. 7. We conducted our 
trial in a 1.5 m by 3.3 m rectangular area. The participants 
were seated in front of the robot. Five objects were placed 
between the robot and the participant. These objects are 
approximately 0.6-2.6 m far from the participants. 

We controlled the attributes of the books. The size of the 
books was identical, and the attributes were color, figure, and 
symbol. Color, figure, and symbol contained three, three, and 
two types (Fig. 8). We prepared 18 books to satisfy all 
combinations of the attributes. 

C. Procedure 

We conducted our trial as follows. First, we explained its 
purpose and our experiment’s overview to participants who 
signed consent forms. After that we gave them the following 
oral instructions: “The robot can recognize human speech and 
pointing gestures. Please indicate one of the books after the 
robot asks you to do so. Please act toward the robot as you 
might toward a person.” Besides participants were given these 
instructions with sitting on the chair placed in front of the 
robot. 

After the instructions, the participant selected five books 
among the 18 and arranged them based on the arrangement 
conditions. The participants repeated the object reference 
conversations ten times. We call these procedures sessions, 
which were conducted in every arrangement condition: 

congestion, two groups, and sparse set. The participants 
answered questionnaires about their intention to use our 
system after three sessions. They eventually conducted two by 
three sessions with different confirmation conditions. We 
counterbalanced the order of the arrangement conditions 
within the sessions and the confirmation conditions within the 
trials.  

D. Measurement 

We measured the following items in the trials: 

1) Recognition performance 
Recognition performance denotes the success rate of the 

object reference recognition. We calculated it from the 
number of object references correctly recognized by the robot. 
We investigated whether the recognition performance is 
different between the decent and excess conditions.  

2) Information content 
Information content denotes the amount of information in 

the participant’s references. The attributes of the objects (color, 
figure, and symbol) and the pointing gestures useful to 
identify them are regarded as information. We investigate 
whether the information content in the decent condition varies 
in the excess condition. 

E. Participants 

Eight native Japanese speakers participated in our 
experiment: six males and two females. They are all 
twenty-something university students. 

VI. RESULTS 

A. Recognition performance 

Table. 1 shows the recognition performance results, which 
we tested by a paired t-test to verify the effect of each factor. 
The recognition accuracy did not differ significantly between 
confirmation factors for any arrangement factor, though the 
recognition accuracy of the congestion level was higher in the 
decent condition than in excess condition about nine percent.  

B. Information amount  

The results of the amount of information specification are 
shown in Table. 2. To verify the effect of each factor, we 
tested the results by a paired t-test. The information amount 
did not differ significantly between confirmation factors for 
any arrangement factor, nevertheless the information amount 
in the enough information level was higher than the redundant 
information level for all arrangement factors.  

TABLE I. OBJECT RECOGNITION PERFORMANCE 

 Sparse set Two groups Congestion Total 
Excess 73.8% 62.5% 61.3% 65.8% 
Decent 72.5% 63.8% 70.0% 68.8% 

 

 
Figure 7. Environment 

 

Figure 8. Example of object used in trial 

TABLE II. RESULT OF INFORMATION CONTENTa

 Sparse set Two groups Congestion Total 
Excess 1.50 (0.596) 1.59 (0.478) 1.91 (0.670) 1.67 (0.581)
Decent 1.56 (0.452) 1.78 (0.526) 1.94 (0.693) 1.76 (0.557)

a. Means with standard error in brackets 
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VII. DISCUSSION AND CONCLUSION 

A. Interpretation of results 

As a result of the experiment, there is no significant 
difference between the recognition accuracy and the amount 
of information for the confirmation factor. However they 
improved slightly in the proposed design. When the robot uses 
enough information instead of excessive information to 
identify objects, participants came to use similar information 
as the robot. But when it uses rich information for 
confirmation, participants used less information to identify 
objects. In this study, these tendencies were observed in 
differences in the performance of object reference recognition 
in the congestion level. We are set to verify these tendencies 
via further experiments. To verify the tendencies we need to 
raise the level of recognition accuracy because if the robot 
cannot recognize the participant’s reference correctly, 
participants may feel the reference is not good and change the 
following references. In order to raise the recognition 
accuracy, it would be important to change the weight of 
speech and pointing gesture likelihood dynamically. In this 
study, we gave equal weight to the likelihoods independently 
of the arrangement of objects. Changing the weight in parallel 
with the objects arrangement (for example likelihood of a 
pointing gesture is given a larger weight when objects are put 
separately) would allow us to raise the recognition accuracy. 
Since improving the performance through interaction has 
never been reported in the field of human-robot interaction, 
we believe that a decent information approach will become a 
new way of designing robotic interaction. 

Our design is that the performance of object reference 
recognition improves if robots make confirmations that 
contain minimum information for distinguishing objects. This 
is useful for designing interaction for social robots because 
confirmation is a natural behavior in object reference 
conversations and is easily integrated in interaction design. 
Since this approach is independent of such engineering 
restrictions as sensors and algorithms, it can be easily applied 
to existing robotic systems for object reference recognition.  

B. Limitation 

In this study, we experimented in a limited situation where 
participants specified books having three features: color, 
symbol, and figure. Our findings are general in the case of 
other objects, which also have such features as color, size, and 
shape that are useful for identification. The essence of our 
finding is that the information amount of robot confirmation 
must be controlled. Our findings will be observed in other 
object reference conversations. 
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